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ABSTRACT

Invisci d, supersonic coni cal flows past bodi es whose cross-

section deviates slightly from that of a right circular cone are studied

by means of a perturbation technique. Writing the equation for the body

as Ob(~
) = °Ob 

+ z e
flb 

cos n~ + E sin m l , where 
~b 

O1%~
<< °Ob’ 

we

have obtained analytical results with the assi~nption of a weak polar cross-

flow ( eg. 17 . e8 / a << 1 ). The effects of small angles of attack and

yaw are included. Using the hypersonic small disturbances theory approxi—

mations , we have developed explicit results for the flow field veloci ty

components , pressure , entropy, and shock shape for cases n, m = 1 , 2, 3, 4.
Compar i sons of theory wi th experiment for n = 1 , 2 are favorable.

The results obtai ned also agree wi th linearized theory when M18 + 0

and Newtonian theory when M1e + ~. The streamsurfaces of the vel oci ty

field are calculated and possible waverider geometries that can be de-

veloped therefrom are discusse d.
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SECTION 1

INTRODUCTION

Conical bodies refer to shapes that are generated by a semi-
infinite line , one end of which is fixed at a point called the vertex of

the body . By moving any other point on the line through a closed

curve, a conical body is generated . A right circular cone is the most

comon example of a conical body . Many practically important lifting

bodies can be approximated as conical or nearly conical , and thus the

study of flows past conical shapes is of interest.

Provided the bow shock wave is attached , the flowfiel d associ-

ated with a uniform supersonic flow past a conical body is also conical .

That is , the flowfield is independent of distance along a ray through

the vertex. Conical flows have been extremely valuable as building

blocks for more complex situations and as guides to the nature of super-

sonic flow. They provide two of the more important exact solutions for

inviscid supersonic flow past bodies (e.g. the wedge and right circular

cone).

In this report we wish to study supersonic flow past conical

bodies whose cross-sections deviate slightly from that of a right cir-

cular cone. In this way , we can study the effects of angle of attack ,

elliptic eccentricity , and so on. Using a regular perturbation scheme

as orginally suggested by Fern , Ness , and Kaplita (1) and later used

by Chapkis (2), we seek solutions that differ slightly from a known
• -- nonl inear flowfiel d -- here the supersonic flow past a right

circular cone. Rather than solve the perturbation problem

____ L ~~~~~~~~~~~~~~~ L - - - — 
- 

- . ~~~~~~~~~~~~
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numerically, as did Fern et al., we shall use an approximate ,

albeit quite accurate , analyti cal sol ution for the right circular cone

flow that allows the perturbation problem to be solved analytically

in closed form. In contrast to Chapkis ’ solution , the approximate

circular cone solution that Is employed herein is considerably more

accurate. In this way the accuracy and utility of the results are

enhanced.

Here we consider bodies which deviate from a right circular

cone by amounts proportional to cos nl and sin m4. The cone at small

• angles of attack corresponds to n = 1 and the slightly elliptic cone

corresponds to n = 2. Superposition of the results for various m , n

al low a much larger class of body shape to be studied . rn this way ,

the range of conical bodies for which approximate solutions are avail-

able has been generalized consi derably.

In what follows , we first derive the governing equations and 4

boundary condi tions for these conical flows . Using the “linearized

characteristics method” of Fern et al (1), we then derive the smal l

disturbance equations and the simplifi ed form of the boundary conditions .

A “weak pol ar crossflow” approximate solution to these equations is

then obtained . Further results are found using the hypersonic small

disturbances approximation. Comparisons of these results wi th experiment

Is then given. The streamsurfaces and possible waverider geometries

that derive from these streamsurfaces are then discussed. The report

ends with. some concl uding remarks.
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SECTION 2

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The equations experssing conservation of mass, Newton ’ s

second law, and the first law of thermodynamics ( in both entropy and

total enthalpy form ) for an inviscid , adiabatic , steady flow are

~~~~
. (p V ) 0  (1)

p V .  vV = —v p (2)

V .v s = 0 (3)

v ( h  + V2/2 ) = (4)

We shall take the state equations to be of the form

p p (p ,s) (5)

Pt = h (p,p) (6)

I
Equation (4) can be integrated to give the result that the total enthalpy

h + V2 / 2 is constant along streaml ines. As we assume the freestream

conditions to be uni form, the total enthalpy is constant everywhere.

If we eliminate the pressure and density from the continuity and momentum

equations , we obtain

O — - 2 ~ ~~ V) (7)
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It is convenient to adopt a spherical polar coordinate system

( r, 0, ~~
) aligned with the basic circular cone with origin at the cone

vertex ~~~ Figure 1). In this case, Eqs. (4), (7), and (8) become,

assuming conical flow (e.g. a/ar 0),

a2 = rj-1 (V 2 - u2 - v2 - w2) (9)

0= U (2~~~
v +

2
w )+ v cote+ (l -

~~~~
)
~~~~ 

(10)

a2 sine 
~ a~ 

sine a~ as

o = v i + ~
_ !L_. .

~~~~
. _  v2 - w 2 (11)

as sine a~

2 ~~~~~ 

= - a -
~~~~- - w -~~~~~ + 

~~

-

~

-

~~~~

- -

~~~~

- + uv - w2 cots (12)

= - u - v —u + v si ne—fl- + u w si n

+ ~ w cos e 
(13)

Here VM is the maximum attai nable velocity for the given

total enthalpy h0, VM 
= 12  h0 . Equations (9) - (13) also assume a

perfect gas model for which Eqs. (5) and (6) reduce to

4k
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= 

~1 ~~ 
)

Y 
exp ( 

~
- - -

~
-‘) (14)

1 C~,

h = ~~ Y~1~~
a (15)

The subscript 1 refers to a reference state taken here to be the undis-

turbed freestream conditions.

The boundary conditions for this problem include the shock

jump relations and the condition of zero mass flux through the body --

the so-cal led tangency condition . The shock jump conditions can be

wri tten

= 
~2 v2~ ~s 

= (16)

in V~ + p1 
= m v2 ÷ (17)

V 2 V 2

m ( h 1 + —2-1- ) = m ( h 2 + _2.?. ) (18)

Here the subscripts 1 and 2 refer to conditions upstream and downstream

of the shock wave and is the unit normal to the shock (see Figure 2).

The freestream conditions are taken to be constant with velocity 
~ 

at

angle of attack a and angle of yaw T relative to the z - axis ,

• -~~ V1A 
1 

= 

(1 + tan~ c~ + tan2 )l/2 
(e
~ 

+ tana ex (19)

+ tan t e~)

6
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The tangency condition on the body can be written

= 0 on body (20)

Here 
~b is the un i t  norma l to the body.

The component of the freestream Mach number normal to the

shock wave , M1 , is given by
n 17

M1 ~~~~~ 
• y ~ ; m1 = ~~s a1 (21)

For a calorically perfect gas, the shock jump conditions can be re-

written

+ p M1
2

V1 • 
n5 

= 
2 

= 
( -

~
+ 1) n (22)

~ (y-l ) M1 
2 + 2

X = x (23)

4=l +~~~~ (M 1
2 - 1 )  (24)

2yM1 
2 

- (y-l) (y-l) M1 
2 ÷ 2

= in 

- 

y+l ~ ~~~~~~~ M1 2 
(25)

For con ica l flows , we can take the equations describing the

shock wave and body as

shock wave: e = e~ ( ,
~ 

) (26)

body: °= ° b~~~~ 
(27)

In the direc t problem that we are considering, °b~ ~
) is given and

~~~ 
(44) is to be determined . We introduce the angles ~ and sso that

8

L_ 
~~~~~~

—
~- - - ~~~- -

- 
- • --~~ i ~~~±iL~± •
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• 
= cos B — sin B (28)

~b ~~ ~ — sin 6 (29)

where

do debtafl B 51~~6 _a~
.S 

, ta n 6= sTfl eb d~ 
(30)

The expression for the normal component of the freestream Mach number

can then be rewritten (31)

M
= 2 ~ 112[cos8 (-sine + tancz COS8 Co54,

fl (1 + tan a +tan’-r)
+ tant cose sine )

— sin B(—tancs sin44 + tan~r C0544 )

Equations (22) and (23) can be sol ved for the three velocity components

downstream of the shock wave in the following form

U
2 1

= ~, ,,0[cose + tana Sifl8 COS44
‘1 (1 + tan’a + tan’r )

+ tant sine sin~ ] (32)

(33)
v2 1

= 2 2 l,!,Cc05B CcosB (—sine + tana cose cos~
1 (1 + tan a + tan r ) “

~~
+ tanT cose sin~ ) -5m B
.(.tana sin44 + tant c0S44 )}

- y-l 
+ 

2
~~ y+l ~y+ 1) M1 2n

- sins {- cosa (-tana Siflc l + tanT cos~

- sins (-sine + tana cose cos44

~ ( + tant cose sin~ )
~

)

L_L~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ II1T~ - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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w
2 1
1 (1 + tan2a + tan2t )l/~

+ tan a COS 8 cOS • + tan t cOS 8 sin 44)

— sin s (—tan a sin ~ + tan t cos ~

+ 

(1+l )M 1

- cos ~ (-cos B (-tan a sin 44 + tan t cOS 44 )

-sin ~ (-sin e +tan ~ cos 8 COS 44 + tan ~r COS 8 Sin 44)}] 
(34)

Here 8 is to be evaluated at e~ (~~
). The tangency condition on the

body becomes

O = V
2 
COS 6 - w2 sin 6 

(35)

wi th 8 evaluated at 8b ~~~

Equations (10) - (13) give four nonlinear partial differential

equations for the four unknowns u, v, w , and s. Equations (25) and (32) -

(35) gi ve five boundary conditions. Thus the unknown shock shape 0~

can also be determined. Once the velocity and entropy are known, the

pressure coefficient,

e
• P . ~~ p

1~ 11 
(36)

• 
I.
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can be determi ned from

v 2 -V 2 _x1_
C~ ~~~~~~ ~ - 2 ~~ exp ( - 

1 
~ 

- 
~ (37)

• - yM1 VM V i

It is convenient to Introduce the following normali zed

variables,

+ V s - s  p

~ -~ i ~~~~: P —
- 1 — — a

1 - V 1 
- p1 

a 
(38)

Dropping the bars for convenience , we can then rewrite Eqs. (10) -

(1 3) as,

2 ÷ 2 2 2
0 u (2 

~ 

+ (1 

(39)a~ a2 sine a~

o = + 

~~~~~~~~~~ ~~~~~~~~ 

- - w2 (40)

1 (Yl) 
= - u - w ft + 

~~~~
. 
~~ 

+ uv - w2 cotS (41)

y(y-l) 
~~ 

= - u }
~

- - v ~~~~~ + v sine ft + uw sine+ vw cose (42)

where a2 Is given by

a2 =ji (V 2 - V 2) v 2 = 1 +  2 (43)
•“~ 1

The boundary conditions on the veloc ity are still given in Eqs. (32)-(35)

with the left-hand-side of Eqs. (32) - (34) replaced by u, v, and w ,

( )

- - 
11
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respectively. The boundary condition on the entropy s becomes- . 

2y M1 
2 (y- l) (y-l) M1 

2 2 ~
s= in ( 

~
j——., ~ ~ +1~ 2 at e = e~ (44)

while the expression for the pressure coefficient C~ becomes

2 2
C~ ~_a2. {(M

2
_ 

) exp ( - —L1-) - 1} (45)
• 1 M

12
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SECTION 3

LINEARIZATION ABOUT CiRCULAR CONE AT ZERO ANGLES OF ATTACK AND YAW .

Let us assume that the f lowfield is conical and deviates slightly

from that for flow past a right circular cone at zero angles of attack

and yaw (see Figure 3). Furthermore, let us expand the flowfield variables

in a Fourier series In the azimuthal angle •.

u = U
0 
+~~~ “b 

u~ (e) cosn • + m Urn (e) sin in

v = 
0 

+ vn (
~~ cosn ~ + rn~ ~ 

(e) sin mq,

= 

~~1 ~ ~ 
(o) ii sin n~— mb 

Wm (e) in cos in$

(46)

S = s
~ 

+ 

% ~ 
cosn 44 + 

~~l 
mb 

Sm (e) si n m~

= 8~ cos fl 44 + 5rn5 
sin m 5

8b 
= 

°b 
+ COS 44 + O~~ sin fl44

The subscript naught refers to the basic flow past a right circular cone

at zero angles of attack and yaw. In order that the flowfield deviate

slightly from this basic flow, the Fourier coefficients ~ and 8 (andnb
13
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FIGURE 3. SPHERICAL PROJECTIO~I OF SHOCK AMO BODY
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therefore e and e ) must be smal l compared to e (and e ),m
~ °b

e~

b 
<<1

(47)

rn5
1~~ 

i— << 1
Os OS

We shall assume this is true so that terms of second order in S and

8n are negl igble. For consistency , we also assume the angles of attack a

and yaw r are similarly small compared to
b

Substituting these expansions i nto the governing equations and

boundary condition , and equating coefficients of powers of B , B tonb mb
zero, we obtain a hierarchy of probl ems, the first being that for flow

past a right circular cone at zero angles of attack and yaw. The

governing equations for that problem are

2 u~ + cot 

ao
2 

+ ~~~
2
( U + ~~2. )

y (y-l) ~~~~~~~~ 

— - U
0 ~~~~

— u0 v0 (50)

with

a0
2 

= -j-1- (V~ - a0
2 - v0

2) (51)

The associated boundary conditions are

0 = 5  :Os

15
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U = COS O
2

V ‘- — cos S

~ 
_~~~ l~~ M

y+l sin e (52)
• - 12~ ~ 

2 sin2e-y+1 (y- 1)M1
2 sin2e+2 i

~

ln 
~~~

- 

~~

0 0
%

.

v0 0 (53)

The equations for the first order (e.g. of order e~ , e~ )
b b

probl em are
dv 2w

2 Un + cot e v~ + +

° 2 
(54)

a0 
[ u1~ - U0 a0 do a0 do

dln v 0 v u
+ 2 V~ do )+ (~2.) [ 2—i Vn ]

du dun 0
u — V

0 ~~ v n~~~
._ _

~~~
V o V n (55)

a 2 ds duo n — 
n

~~

- y (y-1 )  S~ 0 ~~ + v0 V~ + v0 SinG 
(57)

+ w~ (u0 si ne + v0 cose

o = ~~~+ 1 (~~~~~~ +~~~~~~) (58)

16
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The associated boundary conditions are

0 8 ~~ :

du
= (—sin 8 — + A 61n S~ fl s) ~~

—

dv 2 - (y —l ) M 1
2 sin 2 0

= do - 
0 
co: e 

2 + (y- l )  M1
2 sin 2o 

(59)

- A 61 )) ~~nb
I - 

en
1 2  1 A 6  —

~~
-Wn = 

~~ r~l 
- 

M1
2sin 2e 

- in nb

ds0 4 y (y-l) cote (M1
2 sin 2e-i)2

Sn = d 
+ 

H1
2 s~~~ - ~+l) ((y-l) M1

2 sin 2o +2)

(1—A 6lfl)
”
l 

-

~~
---

~~

-

I 
nb

0 = 5

vn 2 u o 
(60)

Here A is (tan a / 
~l 

or (tan r ) / 01 for cases involving angle

of attack (n=l ) or yaw (m=l). 61n is the Kronecker delta symbol .

Equations (55) and (56) can be used to show that Sn IS constant and that

v~ equals du~ / dO . The result that Sn ~~S constant is not valid on the

body surface. The body surface is a streamsurface and the entropy must

be constant there. Our perturbation approach gives S = + Z S
n 

cosn 5

+ E s~ sin m S which is not constant on the body surface. As a con-

sequence there is a thin l ayer near the body surface , the so—ca lled

H 17
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vortical layer, where the results of our regular perturbation scheme

are not valid. Munson (5), Melnik (6), and others have studied con-

ditions in the vortical layer and have shown that the results obtained

for the pressure and azimuthal velocity by means of the regular per-

turbation approach are valid in the vortical l ayer while the results

for the radial and polar velocities and entropy are not valid there.

The methods of singular perturbation theory allow one to correct the

i nadequacies of the regular perturbation approach near the body and

thereby obtain a uniformly valid solution. We shall not attempt to

deal with the vortical layer as it will not affect the results of

i nterest to us.

Equation (57) can now be rewri tten

u
y(y - ) v0 

Sn 
= -

~~~~
- (u,~ + ~ sin e) + ~~ (un + W

n 
sin e) (61)

which can be formally i ntegrated to give

+ Wn si n e = - 
~~~~~~~~~~~ 

(-v 0 sine) a~

2 3  (62)

re a
- I  0

1/2
0~~ V

0 (-v 0 sin 0)

= — F~ (e)

noting that (Un + W
n 

sine) vanishes at & = e~ . Elimi nating v~ and w~
from Eq. (54), we obtain
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d2Un du 2 2 n2F Ce)
—

~2 
+ cot 8 J1 + u (2-n csc e) =

do do n sin B

(63)

v u du v 2 d2u dv a v dv
+ 2_ 2 . _2.~~fl ÷ (.~2.) [u~~+ — ~~ - 2( Uo ÷ ) ~~~ + 2 ~~i~ j~~]

wi th boundary conditions

du
= 

~o 
: u~ = — E-

~~~
- ÷ sin 0 (1—A 

~ln~~ ~~S nb

du~ dv 2—(y—l)M 1
2sin2e

= - ÷ y cot o( 2 2 (64)
2 ÷ (y—l)M 1 sin e

en
. (l-x 

~~~ ~~

0 0
% 

: 1 1 = 2 u 0 (65)

Once ~ is determi ned, Wn fol lows from Eq. (62) and vn follows from

du
v~~=~~!! (66)

The disturbance sound speed an can be evaluated from Eq. (58). The

constant s~ is given by Eq. (59).

The pressure coefficient C~ can also be expressed as a Fourier

series expansion. Substituti ng for V and s in Eq. (45), we obtain

cp = cp0 
+ 

n=l ~ 
C~ (a) + 

in~~ 
Cpm 

(0) sinm ~ (67)

19
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where

2 V 2-u 2—v 2 
~~ -s

Cpo 
= 

M 
VM
2 _~1 ~ exp (

~~~~
) — II (68)

Cpn 
= -(C

r 
+ 

~ + ;:~ ~~2
U
~ 
~
2
~~~

2 ~ (69)
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- - SECTION 4

WEAK POLAR CROSSELOW APPROXIMATION

Here we wish to exploit an approximation introduced earl i er by

Rasmussen (7) that allows closed-form analytical results to be obtained.

These approximate results are surprisingly accurate over a wide range

of conditions and are particularl y simple to use. The approximation

we shal l invoke is the “weak polar crossflow approximation ” corres-

• ponding to the limi t v0/a0 
÷ o. The term (v0/a0)

2 varies from its

maximum value at the shock to zero on the body,

v 2 v 2 (y-i) M 2sin 2 e+ 2
< 0 < 0 — 1

o o shock 2y M1 sin 5 —y+ 1

For M1 sin e large , the upper bound to (v0/a0)
2 becomes (y-1) / 2y

( = 1/7 if 
~y = L4) . As we shal l see, ignoring terms of order v0/a0

in the governing equations reduces the equations to forms that can be

solved analytically in terms of known functions.

• Ignoring terms of order (v0/a0)
2 in Eq. (48), we cm reduce

the equations governing flow past a right circular con e at zero angles

of attack and yaw, Eqs. (48) - (51), to

d2u du
+ 2 u  = 0  (71)

du
v0 =~~j2. (72)

a0
2= .9-

~
- (VM2 U0 

- v0
2) (73)
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~~ 2yM1
2Sin 2 e

~ 
-~
+l (y-l) M1

2sin2 e
~ 
+2 ~

s = ln {( ~ 2 
S 

~ (74)o (y+l) (y+l)M1 sin
5

wi th boundary conditions
I

• S 0
0 

u0 cos O
S 

2 2 (75)
du y—l V — cos eo , M
do y+l ‘ si ne
du

= ‘1 .

Equation (71) is Legendre ’s equation whose solution can be written

= A0 
p
1 (

~~
) + B 

~1 
(i~’) (77)

(11 = cos e). Here P,.~ and are the Legendre functions of the first

and second kind , respectively . In particular ,

P1 (ii ) = 
~~‘ ~1 

(
~~

) = F in (
~~~~) - 1 (78)

The boundary conditions , Eqs. (75), allow the constants A0 and

to be evaluated. The results are

A0 = 1 + [(l~~
2) Q ( )  (1- y-l VM 

2 )] 
=

2 2
1 Vu -ii

B = — [ 
~(1— ~’) (1— 

X~L ‘ I
0 

‘r~l 1 + 112 
=11

Here = cos . The cone angl e S ( = C05 1 ‘sb) follows from

dQ1 y-l V:
2
~~

2 Q1

(
d Q1 

= 
di.t y+l 1-p 2 ~~ (80)

V 2  2M -
~~~~~

y+l

22
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- - We now wish to apply this weak crossflow approximation to the

perturbation problem , Eq. (63). Equation (63) contains terms on the

- - right-hand side that are order (u0/a0) (v0/a0) and (v0/a0)
2 relative

- - to terms on the l eft-hand side . The terms of order (v0/a0)
2 on the

- 

right-hand side are uniformly small compared to like terms retai ned on

the left-hand side in this weak polar crossflow approximation. This

- 
is not the case, however, for the term of order (u0v0/a0

2). Specifi cally,

if we compare the term 2 (u0/a0) (v0/a0) du0/de on the right-hand side

wi th the term cote dun/do on the left-hand side , we see that their

ratio varies from a maximum at the shock to zero on the body . The

value of the ratio at the shock is given by

(81)

2 U0 V0 - 
- 4

~ cote~~i~ ~r~~
3 - 

2
° ° ~~~ (y+ l)  [ 1  - (1J__ ) (•I + 2 2y+l (y+l) M1 sin

which is not small compared to unity . Nonetheless , we shall i gnore the

term 2(u0/a0) (v0/a0) on the ri ght-hand side for the following reasons.

First , this term is relatively important only near the shock . On the

body it is identically zero. Second , although the resulting governing

equation is somewhat inaccurate near the shock, the solution u~ is still

required to satisfy exactly the boundary conditions given by Eqs. (64).

As we shall see, the results obtained by ignoring this term compared

well wi th experiment and other more accurate numerical solutions .

Thus , in the weak crossflow limi t, Eq. (63) reduces to

23
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a.

2- - 
—s- + coto ~~n + (2 - n2csc2 e) u = n2 csc2 e F,,~ (e) (82)
d o  do

The boundary conditions remain unchanged and are given by Eqs. (64, 65).

Equation (82) is formally the nonhomogeneous associated Legendre

equation of order one and degree n. If we note that Q1
n (e) Is a

solution of the homogeneous equation , where

n/2 dn
= (— 1) (i—p ) ‘ 

~~
— cosO (83)

d p ~
1

then the method of variation of parameters gi ves the solution of

(82) as

SOs 
805

~ (8) = n2 ~ ~~ I n 
do ’ 

J 
F~ (e ’’ ) cos e’’

~ ~ ) sin o

0
0

•Q
n ( cos e ’’) do ’’ + A Qfl (e) f do’

e Q~ 
(e ’) sine ’

+ B~ Q!~ ( e )  (84)

The boundary conditions , Eq. (64), al l ow the constan ts An an d B~ to

be eval uated as

*The function sine is also a compl ementary solution for the case
n = 1.
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p
ndQ1 n du~A~ = [ sine do u — sine Q1 ~~

—]n 
~~~~~~ (85)

S

U
B -

n 1 (86)
1

S

Equation (65) allows one to determine the ratio of the shock displacement

to the body perturbation 8
s

The i ntegrations requi red to evaluate Eq. (84) for un ( e )

cannot be carried out in closed form. For this reason it is useful

to consider a further approximation and restri ct attention to slender

bodies . In this way, explicit resul ts can be obtained which are quite

useful.
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SECTION 5

HYPERSONIC SMALL DI STURBANCE AP PROXIMATIO N; COMPARISO N WITH EXPERIMENT

Here we wish to consider slender bodies for which , O~, eb 
.4. 0.

In order to retain the essentially nonlinear character of supersQnic-

hypersonic flow , we shall also require M1 to be large so that

K = M 1 sin e (87)

is finite. The limi t e -~~ 0, M ~~- such that K8 = M1sin o is finite
• is the hypersonic small disturbance approximation limit.

In the hypersonic small disturbance approximation , the solution

for flow past a right circular cone at zero angles of attack and yaw

reduces to (3)

K 2 K 2
u0 = l -  ~ sin e~~E ( g—) + ln (-gj)] (88)

2 b

K 2
v0 =~~ si n e f l - (- - g ~)J (89)

0

K 2 K 2
ao
2 = —

~
-2-

~~ 
1 +j~- Kb

2 ( 2 + ln (~i~) - (iR~
-) ) ] (90)

1 0

where K = M sin e and Kb M sin e . In Eqs. (88-90) we have

written 8b for e and 8 for 8 to simplify the notation. We shall

follow this practice hereafter. The shock angle Os and cone angle 0b

are related by

0 1/2s _ ,y +1 1
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- - These results allow one to evaluate the function F~ (a) that appears

in Eq. (62). Ignoring the variation of a0 across the shock layer in

• comparison with the variation of v0, we obtain

2 2 1/2
F~~~o5 G[ l- ( ~ 2~ ~ (92)

Ks~~~
Kb

where

s a 2
... n 0

sy Y~~

= 

K5
2 (2y K5

2 - y +1) ((y-l) K5
2
+2) 

(1+ 2 Kb
2 (2- 

K 2

Here K
~ 

= M1 O~ and Kb = M1 °b~
In this hypersonic small disturbance theory limi t, Eq. (82)

becomes

d2u 1 d u  n2
+ — ___ — 2 ~ = 

~~ 
Fn ( o ) (94)

do 0 de 8 0

with boundary conditions

0 8 .  2s~ n 0

= 1+ 

~~~~~~~~~ 

(lx) 
2-(~-1) K~

2 
(95)

dO 
nb ~s 

0
s 2+(~-l) K~

• (1— A

27 
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d u
—i -2 (96)

Equation (94) has been i:tegrated explicitly for n = 1 , 2, 3, 4.

While the integrations are somewhat l aborious , there is no particular

impediment to consideration of larger n. The results for the first

four values of n are given below

8 ~2_~ 2 1/2 282 +8 
2

U
1 

= o~ G {-l+ + 
~~ 2 

b ) + 2 2 1/2
8s 0b ~ (o~ 0b

a + (e 2 2) 1/2 
I~~.

s s b
.ln ( 2 2 l’2~~~ 

(97a)
o +(e —G b ) 1

+A 1 e~ -4- B1 e

2 2 2 2 5/2
— e  — e 8 ( s  

_ _ _ _ _ _ _ _ _ _ _ _ _u2 — 5 G 0  {8 ., 2 2 + 

~ 2 ( 2 2~~1/2~85 O~ 8b ~
8c ~~ 8b

-4- 
2(38 + 2eb

2
) ~ 8b )  

3/2

28 2 i5eb
2 (~~2 

~~~ 
1/2

+ 2e 2 e2 -e 2 1/2
— 6 e 2_o 2 (97b)

s b

~ 1/2
- 
2 °~~°~

2 
°b~ 

i/
•
~ (

tan -l S
eb
2 ~

2 2 1/2 e8 - 8  2 2
• 

- 

— tan ~ 2~ ,)} +A 2 o + B 2 o
8

28
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11
6 2 2 1 / 2 2 2 2

u = e G ~~3 c e~ — _0 
+ 

38 ~ °b 
~ (

( 0b )

s 0b 0b 8s 8b

2 2 2  4 4
~~
8c (0 8 b )

_ _
~~_ + _L. 

0b

12 8

+ 
2 2 1/2 8

. in ( 
O~ (~s 

0b ) (97c)

8 
~~~° ° b~ 8

÷A 3 e 3 +B 3 e3

3 2 +2 2 2 2 3/2
U 0 G ~ ~

4 — 4 ( ° 8b ) (
~ 

0b 
~) - ___________

4 = S 15 (~2 °b~ 
1/2 

~ 0b ~s

2 2 1/2
__________________ 

-1 b

~ 
3~ 2 2~~l/2 

tan ~ 20b ~°s 
8b ‘ 8b

(97d)
2 ( 2 2~~3/2 2 2 2  2 2

+ 
‘8 0 b ’  

(
( 

0b )  ~~2( 8~~~b )1/2 
~ 8b 5

2 2 2  1/2 2 2 3
1 8 0 b (

8 8b )

4e~ 05 -e~

3 2 2 2 2
+ 

0b (0 8b ) 
+ ~2 8b ~5 0

+ A4 ~
4 

+ B4 ~

The constants of i ntegration An and B~ are given by
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r

du
An ~~~ ( u~ - —~~-- 

._J!) (98)0

du
Sn = 

~~~~~~~~~ 
( u~ + —

~~
.-- ~~~ 

~~~~~~ 
(99)

Havi ng determined the u~, we can compute Vn~ 
Wn~ ~~ ~~~ 

and

e,~ 
/e,~ from Eqs. (66), (62), (58), (69), and (96),respectively.5 5

We are particularly i nterested in the shock shape - body shape relation

(8n /8~ ), surface pressure coefficient (C ), and flow streamsurfaces.
b s -

The first two quantities can be easily measured while the latter quantity

is useful in developing waverider geometries.

Di fferentiating Eqs . (97) with respect to e, we obtain expression

for v1, v2, v3, and v4. Evaluating these expressions at e = ~~ we can

determine the ratio of the body perturbation to the shock perturbation ,

8n ‘1°n The results are i 
-

C 5

2
1 + (1-x ) { G [ + 2 l’2 in (~ 

+ (~~i)
l/2 

~i s 
b 8(r~ — 1) ‘

(99a)
4 -‘ 2-(y-l ) K

2
‘in 2+ (y—l) K~

0 2

G [ n ( n2+2) + 

2 2~ i 1/2 tan~ ( ( 2 1) 1/2 ) ]
S - 

(9gb)

+ ~~-i + fl +l 2•4~ ~
2 1 2-(y-l)_ K~

2

2~
3 4 ~2 2+(y-l) K~
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0

= G - - - 2 l’2 ln(n+(n2-l)112 )]
3 4 16 32 32(~~— l ) (99c)

~~ ~~~ n
6 +1 p2+1 

+ n
2-l 2 -(y-l) K

~
2

4 n 4n n r~ 2 +(y—l) K5

84 3 7 3 5
1—~~~ G E — ~— +— f - 2 n 5 +~~--+8 (n 2-1) ~~~~~~~~~~~~~

+ 

2(n2-1) 1/2 
tan -l ( ( 2 1) 1/2

) ~ 
+ (99d)

+ n
8+1 r~+1 + 

r~-l 2- ( y-l)

n ii n 2+ y- K5

where n is the ratio of the shock angle to the cone angle for the un-

perturbed right circular cone,

8
(100)

and is given by Eq. (91) as a function of Kb . Typical results obtained

from Eqs. (99) are shown in Figure 4 for y = 1.4. Note that the lin-

earized theory result o /en = 0 is obtained for Kb = 0. Al so as r~
~s b

i ncrease s, the relative distortion of the shock shape decreases. Other

numerical  results , not shown here , show that these results are not very

sensitive to changes in y for y in the range of 9/7 to 5/3.

Equations (67) - (69) can be used to eval uate the surface pressure

coefficient. Rewriting these results in the hypersonic small disturbance

theory similari ty form,

31
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= + co sn ~ + si n m ~ (1 01)
n °b 0b m 8b 8b

we have , on the surface of the body ,

C~ (~+l) K 
2 

+ 2 i+ 1 i
= 1 + 

- b ln (— + ) (102)
eb (y- l Kb + 2 Kb

2 2 (103)
nb ~p 2 41(K5 -1) (1- x

~~~~~~~~~~~~~~~~~~~~ E
( 2 ) ( ( )  K5

2 +2)

÷ 
U~ (eb) ~ K~ -

a ‘r— l 2 K 2
S 

~ +
___ Kb ~~~~~~~~~~~2 b

where n and ~ /0 are given as functions of Kb by Eqs. (91) and (99)nb n5
respectively. The radial component ~ of the perturbation velocity

is given on the body surface by

u~ ~~~ 3 1 2 1’2— = ( 1— A)  {G En- i  — 
~~~~~ 

( n— i ,.,  in (n÷ (ri — 1 ) ‘ ) ]
5 -V (n c— i ) I f (

(l34a )

- n2+l — 
(n2— 1 )2 2 - (~-1) K

~
2

2ri 2 n3 2 + (~-1) K
~
2 ,n 1

2 2 2  2 2  2 2
= G [ 2 i + 

(
~:!_ + l ) ( T ~1 — 1) 

— 
n (n — 1) 

+ 
(n  -1)

2r~ 2 10
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(~2 -1) (3n 2 +2) 

+ 
(n 2 -1) 

- n2 + 2 (lo4b)
30 2~

2 6

+ - 
2 ~ 

tan 
-1 

~ (
2 -l )l/2) ]

2(n -1) /

n4+l 2 2-(y -l ) K 2
- 

2 
- 

4 ( n + 1 + (~2 - 1) S

2+(y-i ) K
~

,‘ n 2

= G [n3 - 1 - 
n - i  

+ ~~ (n 2-l) (2 
~

) (104c )

- 

(n~-1)~~
2 in (n + (n 2 - 1)~~~2 ) ) J

~
6+1 - 

6 
~ (n 2+l+(n2-l) 

2- (y-i) K
~ , n

2n 2+(y-1) K
~

2
= G [n ’i-l- ~ ~ 2 1) (3n2+2) - 

n 8-i 
- 

(n~-l) (104d)
4n 4

+ -f) + 2 (n 2-i) ((n~~fl + 
2(n2-lj 

+

7 7 5 3

j
~~~

2 
~ 1 2 tan 

-l 
~ 

(n 2-i)~~
2) ) ] - 

f l + 1

4 (n -i) ’ 2n

2-(’Y-l) K 2
- 

6 (n2 + l - ( n 2-1) 2~ ~ n = 4
8n 2+ (Y-l) K~
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Typi cal results for the surface pressure coefficient are shown in Figure 5

for y = 1.4. These results achieve a hypersonic limiting value as Kb +

which agrees well with other known solutions . For example , for n = 1 ,

our result C / o~ takes on the value 4.046 which is to be compared
b

with 4.088 obtained by Cheng (8) in a separate analysis. The linearized

limi t, Kb 
-
~~ 0, of Eq. (103) yields

Cpn
— -‘- —as 

~b ~~ ~l05)b n

This resul t agrees exactly with the linearized theory result of Mascitti

(9).

Figure 6 shows a compari son of the present theory with the experi-

mental resul ts obtained by Chan (10) for flow past a right circular cone

of hal f angle 0b = 15° and freestream Mach number M1 = 10.4 and various

angles of attack. Provided the angle of at-tack is small compared to
b

this fl ow corresponds to a shock wave whose shape deviates from a circle

(in cross-section) by an amount proportional to cos ~. Figure 6 compares

results from the present theory for the surface pressure coefficient for

n = 1 with experimental results for 
~ / = 0 , 0. 2 , 0. 4.

b
The compari son is quite good , although the error does grow as c’. / 0

°b
increases , particularly near the symmetry lines ( 0 = 0, ,r).

Figures 7 - 10 compare the present theory for n = 2 wi th experi-

ments (11) and a purely numerical sol ution (12) for flow past an elliptic

cone . Pro~tded the eccentricity e of the elliptic cone is small , the

cone shape can be approximated by a Fourier expansion

35
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a-.

8b ~~ 
= 80b 

+ 82b 
cos 2 

~
p + 

‘ib 
cos 4 ~p + ( 106)

where (see Lee and Rasmussen C 4 ) ),

6m + ( 3- 2  sin2 Gm) sin 28m +‘i(e’i) 
(107)

• 
2b 

= 
~~ ~ ~ + 

~~ ( 15-20 sin2 8m + 8 sin4 8m ~ +~~(e’i)] S~fl

~~ t ( 3 - 2 sin2 e) +~~(e2) 3 sin 2 8m

Here
e t a ~~ 

/2ab
m ~ (a2+b2) 1/2

(108)

e —
b’+a

and a tanea and b taneb are the semiminor and semimajor

axes. Provided e is small , the elliptic cone can be represented

by the first two terms of the expansion . The third Fourier coefficient,

0
4 , is of order e2 and thus is neglected in our perturbation
b

analysis. The experiments of Zakka y and Visich (11) used two different

ellipti c ones, each cone being run at two Mach numbers . Thus four

comparisons are possibl e as shown i n Tabl e 1 below .

- 
I
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TABLE 1: Experimental Conditions in Zakkay and Visich (11).

a = .2555 a = .2256
\Model b = .3562 b = .4034

= .2911 
°b 

= .2873

Mach \ = .0453 8 = .0758
Num ber \ 2b 2b

4b 
= .0091 

‘ib 
= .0245

3.09 Case 1 Case 2

6.00 Case 3 Case 4

The results shown in Figures 7 - 10 show that the comparison

between experiment and the present theory is reasonable , although not

perfect. The trends clearly are depicted correctly. The largest di ffer-

ences between theory and experiment occur near ~ = 45° - This

suggests that second-order terms (e.g. terms of order 82 
2 and 84 

) may
b b

be Important as they give rise to cos ~ • contributions which are a
maximum at ~ = 45°. The present theory does not allow us to estimate

the contri bution of terms of order 02 
2, although the contribution of the

b
term can be computed . If we compare 02 

2 and 04 for the two
b b b
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a.

models used by Zakkay and Visich , we see that 02 
2 equals 0.23 0

b 4b
This suggests that the 04 contri bution is the most important of the

b
two second-order corrections .

Figures 7 - 10 show the effect of including the 04 cos 4 ~pb
contribution. That is , the dashed lines in Fi gures 7 - 10 give

(C + C cos 2 cp + C 94 cos 4 ~
). In general, incl usion of

~o 
p2 b ~4 b

the 0A cos 4 j, term improves the agreement between theory and

experiment , expecially on the windward generators . However , disagree-

ment between theory and experiment remai ns near ~ = 45°. The causes

of this disagreement are not clear although viscous effects, model mis-

alignment , and nonunifo rm test conditions are possibl e explanations in

addition to the second-order terms i gnored in the present analysis.
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SECTION 6

STREAMSURFACE S AND WAVE R IDER GEOMETRIE S

The streamsurfaces of the flowfield are surfaces composed of

streamlines which , in turn , are the field lines of the velocity vector.

The streaml ines of a given velocity fiel d can be determined from the

solution of

-9.

dr x V = 0 (109)

where r is a vector giving position along the streaml i ne . In spheri cal

polar coordinates Eq. (109) can be reduced to

dr 
= 

r d e  = r sin
~
e d~~ (110)

It is convenient in the present analysis to introduce a new polar co—

ordinate I , defi ned as

8 _ e
b (cf()

I ~ ~ 
(ill)

0 5 ‘‘~‘
8b’~ ’

Then j varies from zero on the body to unity at the shock. Now

0 ’ —8 ’
de = (e — 8b ) ~ 

dI+ ~ 
b 

0 + ~ 
S 

~ 
) d~ ] (112)

b s  s b

For geometries which deviate slightly from that of a right circular cone,

0b = 
°o +l7(e 8m and 0~ =0~ + ~7(e 

‘ 
8m ~ In this case,

b b b s b b
Eq. (112) reduces to

-~~~~
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do = (es - 0
% 

) dl +17(e~ 0 ) •  (113)

and Eq. (110) becomes

r (e — 0  ) r sin ((0- G ) e )
dr = 

0s ~b — dl = 
0s °b d ~ (114)

U V W

with errors of order ~ ‘ 

~b ~ 
The velocity field is given by

Eqs. (46),

U = U
0 

+ ~~~~ ~ 
cos n ~ + 

~~~
em Urn sin m ~

v ÷ 
~~~

0n v~ cos fl 4 + ‘tim sin m ~ (115)

W ~~~~~~ Wn fl 5~fl fl ~ -
~~~~~~~~ 

m~ Wm m cos m

Thus , to l owest order , Eqs . (114) becomes

= (e0 - dl + 1) (e~ 0~~) 
(116)

— (117)
(e —8 ) de dc~

v0 :in ( (o
~~

_e
~~
) 
~ 

= 

~~~ fl si n n 
~ ~~~~ 

Wm 
m cos m~

8~~ )

4 Equation (116) can be integrated to give

f 0 u
r = r. exp ( 

~~~ ~~ 
) j ~~ di ) (118)

1 s b o
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where r1 and l.~ are constants of inte9ration and correspond to the

streamline passing through the point C r~ , , 
~ 

). Integration

of Eq. (117) is impossible , in general. However , for geometries that

can be represented by a single Fourier component in ~ , a rather

simple result can be obtained , (119)

tan (—
~

-
~ )=tan(4L) exp [en 

~~~~~~ 
V0 

Sifl~~ (e o -eo )i)]

Using the hypersonic small disturbance theory approximation , the i ntegrals

that appear in Eqs. (118) and (119) can be evaluated approximately.

There results

2 2 1
r . 0i 0b ~

~ 0b (120)

~~
0n (F0

_u
~) b

2 ~ 2 0b 2 2
tan ( — ) = tan (......J. ) 

~~~ ~~ 
-~~2 

0

~ b (121)

Here we have rewritten the results in terms of e rather than I. Also ,

in carrying out the i ntegration in Eq. (119), we have approximated

(F0 - u~) by its value on the body . 4

Typical results from Eq. (121 ) are shown in Figure 11-14 for

n = 1 , 2, 3, 4~ respectively. These results give the projection of the

streaml i nes on the unit sphere . We refer to these projections as the

“crossfl ow streamlines ” . For a given n , the number of crossflow

stagnation points is 2n. One—half of the stagnation points are of the

saddle point variety while the other half are of the improper node type .
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= 1.5°
b
Y = l  .4

FIGURE 11 . CROSSFLOW STREAMLINES , 
~b 

= 
~ 1 C~~ ~~

. :
b
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FIGURE 12. CROSSFLOW STRE AML INES , = e + a , cos 2~.0b ~b
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M e  =1.01

e = 15°

e = 1 .5°3b

FIGURE 13. CROSSFLOW STREAMLINES , eb = e + e 3 cos 3~.°b b
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a

=1.0
°b

e = 15°

a = 1 .5°
4b
Y = l  . 4

FIGURE 14. CROSSFLOW STREAMLINES , a = ~ + cos 4~.
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These crossf low streamline results can be used to develop a

series of new waverider geometries. That is , since the streaml i nes

of any inviscid flow can be interpreted as a solid boundary , we can

use these streamlines to generate new lifting body shapes. While the

generation of the new lifting body shapes will be the subject of a sub-

sequent report, Figure 15 shows sketches of some possible results .
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SECTION 7

CONCLUDING REMARKS

The results obta ined should be particularly useful because of

their simplicity and ease of utility . The determination of the forces

acting on a body has been reduced to rather simpl e formulas. The de-

pendence of the pressure force on the body shape, free-stream conditions ,

and ratio of specifi c heats is explicitly demonstrated. In addition ,

the associated streamsurfaces al low new classes of lifting bodies to

be developed by means of the waverider notion. In this way , pratical

lifting geometries can be developed which avoid shape corners, wi ngs

of zero thickness, and other unrealistic features.

Comparison of these new geometries and waveriders with experi-

ment remains to be accomplished . The necessary experiments are not

particularl y diffi cult or unusual . However , they are essential both

to verify the theoretical calculations and well as to determine

whether these waveriders give stable , lifting flow at off-design con-

ditions .
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